
CONCLUSIONS REFERENCES

BACKGROUND

TYRA-300 pharmacokinetic and pharmacodynamic analysis 
in SURF301 demonstrates PD activity and selectivity over FGFR1 
Yohann Loriot1, Allison Zhang2, Aaron Hansen3, Charlene Mantia4, Valentina Boni5, Andrew Weickhardt6, Evan Y. Yu7, Marie Robert8, Gopa Iyer9, 
Andrew Murtha10, Sherry Owens11, Ben Suttle12, Gillian Vandekerkhove10, Alexander Wyatt10, Guy Gammon11, Timothy Burn11, Ben Tran13

Eligible adults with advanced malignancies 
with/without FGFR3 alterations received oral 
TYRA-300 in continuous 28-day cycles. Dose 
escalation (10mg -120mg QD) allowed any 
FGF/FGFR pathway alteration. Dose 
expansion (40-90mg QD) required FGFR3 
alterations. The current analysis included 41 
patients from the QD cohorts. Steady-state PK 
was assessed at C1D15. Phosphate levels were 
assessed as part of  laboratory chemistries. PD 
and ctDNA analysis

METHODS

Activating FGFR3 gene alterations are present 
in up to 20% of advanced/metastatic 
urothelial cancers (mUC). While FGFR+ 
mUC is responsive to treatment with FGFR 
inhibitors, the lack of FGFR isoform 
specificity in current pan-FGFR inhibitors 
leads to on-target FGFR1/2/4 toxicity. In 
particular, hyperphosphatemia (FGFR1 
inhibition), ocular toxicities (FGFR2 
inhibition), stomatitis (FGFR2 inhibition), and 
skin and nail toxicity (FGFR2 inhibition). 

In the ongoing SURF301 study, TYRA-300 had 
demonstrated exposures above the IC90 for 
FGFR3 inhibition that are below the IC50 for 
FGFR1/2/4. TYRA-300 led to changes in 
FGFR3 PD markers, a low incidence of  
hyperphosphatemia and decreases in plasma 
ctDNA fractions for all four participants with 
available samples.

RESULTS

C1D15 Phosphate C2D1 Phosphate

Additionally, loss of activity to current 
generation FGFR inhibitors has been 
demonstrated in the clinic due to development 
of on-target resistance mutations (e.g., FGFR3 
V555M/L gatekeeper). TYRA-300 was designed 
to be more selective for FGFR3 as well as target 
FGFR3 gatekeeper mutations.1 TYRA-300 is in 
development for the treatment of FGFR3 gene 
alteration positive mUC and other solid tumors 
(SURF301 - NCT05544552).

were performed on available plasma samples 
collected at Baseline, C1D15 and C2D1. 
Changes in plasma proteins were determined 
using the Olink® platform (Waltham, MA). 
On treatment Olink® data was compared to 
baseline with a paired T-Test using the 60-
120 mg QD participants and a cut-off  of  P 
< 0.01 and an absolute fold-change of  1.5. 
Changes in ctDNA fraction were assessed in 
a subset of  patients with available ctDNA 
samples (n=19) using a custom deep targeted 
sequencing approach.2
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Selec%vity observed for TYRA-300 vs. approved FGFR inhibitors: in vitro Ba/F3 Cellular IC50

No hyperphosphatemia was observed at levels > 7 mg/dL 
across all doses with 7 mg/dL being the level requiring 
interven%on for currently approved panFGFR inhibitors.3-5

FGF19 binds to FGFR3 
and FGFR4 and to
co-receptor KLB6
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FGF19 and KLB increased as poten%al compensatory mechanism to 
FGFR3 inhibi%on. No differences in response based on tumor type 
or FGFR3 status, consistent endogenous and not tumor derived 
response. Confirma%on of FGFR3 dependence ongoing with FGFR4 
PD analysis. 

Compromised Collagen 2a1 and 9a1 secretion 
causes overactive FGFR3 signaling in Slc26a2 
deficient chondrocytes7 linking collagen 
secretion to FGFR3. 

Decreases in ctDNA observed for 
par%cipants with FGF/FGFR3 altered tumors 
treated with 90 mg QD . A molecular 
response was defined as a >50% decrease.8

No compensatory increase in 
FGF21 (FGFR1 ligand) consistent 
with selec%vity against FGFR1. 
Do^ed green lines denote 1.5-
fold absolute fold change.

1.5-fold increases or 
reduc2ons

FGF19 KLB

COL9A1

C1D15 FGF21 1.5-fold increases 
or reductions

Cycle 1 Day 15 Steady State Plasma PK

Greater than dose propor%onal exposure observed. FGFR1-4 target exposures are based 
on protein binding adjusted Ba/F3 cellular assays. Doses ≥ 90 mg exceeded the FGFR3 
IC90 target coverage that resulted in tumor regressions in an FGFR3 p.S249C mUC 
xenograc model.1 (Error bars are Mean ± SEM).
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