RA

TYRA-300 Demonstrates Significant Increases in Bone Length and Foramen Magnum Area in a Mouse Model of FGFR3-Related Skeletal Dysplasia ICCBH, June 2024

Clara Lemoine¹, Matthias Guillo¹, Nabil Kaci¹, Jacqueline H. Starrett², Ronald V. Swanson², Laurence Legeai-Mallet¹

- 1. Université de Paris Cité, Imagine Institute, Paris, France
- 2. Tyra Biosciences, Carlsbad, CA

FGFR alterations are implicated in many clinical conditions

ACH is the most common cause of disproportionate short stature

MECHANISM

FGFR3 G380R gain of function mutation accounts for ~99% of ACH^{1,2}

FGFR3 inhibits chondrocyte proliferation and differentiation, resulting in decreased longitudinal bone growth²

COMPLICATIONS

Infants can face serious complications related to critical foramen magnum stenosis^{1,3}

Additionally: Pain, multiple surgeries, and functional limitations (e.g., reach, stride)

THERAPIES

Vosoritide (CNP analog) is a once daily injectable approved by the US FDA

Infigratinib (pan-FGFR1/2/3 inhibitor) is a once daily oral currently in clinical trials for ACH

Pan-FGFRi side effects led to dose reductions & discontinuations

Source: PEMAZYRE (pemigatinib) label, FIGHT-202 data, accessed 04/15/24; LYTGOBI (futibatinib) label, pooled data, accessed 04/15/24; BALVERSA (erdafitinib) label, BLC3001 Cohort 1 data, accessed 04/15/24; TRUSELTIQ (infigratinib) label, pooled data, accessed 04/15/24; Chan, 2022; Kim, 2019; Hollebecque, 2022 (ESMO)

The challenge: FGFR family active sites are nearly identical

FGFR isoform selectivity

MOLECULAR MODEL

CRYSTALLOGRAPHY

TYRA-300 was more selective for FGFR3 than pan-FGFR inhibitors

Selectivity observed for TYRA-300 vs. approved or late-stage clinical compounds: *in vitro* Ba/F3 Cellular IC₅₀ (nM)

TYRA-300 increased bone growth in the *Fgfr3*^{Y367C/+} mouse model

	Dose (mg/kg/day)	Femur	Tibia	L4-L6
TYRA-300	1.2 ¹	22.6%*	33.0%*	23.5%*
infigratinib	2.0 ²	20.9%	32.6%	12.1%
infigratinib	0.5 ³	10.4%	16.8%	18.4%

*p<0.0001

Experiment conducted in the lab of Laurence Legeai-Mallet at Imagine Institute in Paris, France; data reflects separate experiments for TYRA-300 and infigratinib

- 1. 15 days subQ starting at day one; n=8 for TYRA-300 and n=10 for vehicle, after excluding three mice from dataset when molecular analysis showed chimeric incorporation of mutation;
- 2. Data from Komra-Ebri et al., 2016 (Legeai-Mallet lab);
- Data from Demuynck et al., 2024 (Legeai-Mallet lab); 0.667mg/kg/day human equivalent dose for 2.058 mg/kg/day; 0.167mg/kg/day human equivalent dose for 0.514mg/kg/day; infigratinib human recommended phase 3 dose for ACH is 0.25mg/kg/day

TYRA-300 improved the size and shape of the foramen magnum

TYRA-300 increased chondrocyte proliferation and differentiation

1. Demonstrated significant isoform selectivity for FGFR3 over other FGFR isoforms

2.

3.

4.

Fold Selectivity for FGFR3InfigratinibTYRAFGFR12.2x63xFGFR20.8x19xFGFR467x55x

- **1.** Demonstrated significant isoform selectivity for FGFR3 over other FGFR isoforms
- 2. Increased bone length of the appendicular and axial skeleton in the $Fgfr3^{Y367C/+}$ mouse model

3.

- Demonstrated significant isoform selectivity for FGFR3 over other FGFR isoforms
- Increased bone length of the appendicular and 2. axial skeleton in the *Fgfr3*^{Y367C/+} mouse model
- Improved the size and shape of the skull and 3.
- foramen magnum

- **1.** Demonstrated significant isoform selectivity for FGFR3 over other FGFR isoforms
- 2. Increased bone length of the appendicular and axial skeleton in the $Fgfr3^{Y367C/+}$ mouse model
- **3.** Improved the size and shape of the skull and foramen magnum
- **4.** Restored growth plate architecture by improving proliferation and differentiation of chondrocytes

We greatly appreciate our collaborators at the Institut Imagine!

Laurence Legeai-Mallet Clara Lemoine Matthias Guillo Nabil Kaci

INSTITUT DES MALADIES GÉNÉTIQUES